
XecliP – The big picture 
 

1. Introduction 
This document is intended to provide an overview to the way the XecliP server and clients 
communicate with each other. It will not describe the protocol messages and low level details, 
since there is a separate document for this, but rather give a high level view. 
 

2. Architecture 
XecliP is based on classic client-server architecture, or maybe more precise, a hub and spoke 
architecture. All communication between clients is handled by a central server, which 
modifies, dispatches or generates the appropriate messages for the clients. 
 

Figure 1: Communication between clients and server 
 
The hub and spoke architecture allows the server to easily keep all clients up to date on all 
relevant events. 
 
The network connection between the clients and the server are persistent TCP connections. 
 
The communication is done partially synchronous, partially asynchronous. Message sending 
is done synchronous, while messages are received asynchronous, implementing the observer 
design pattern. 



3. The XecliP server 
The server creates a worker thread for each incoming connection. This way, the server knows 
(after successful login) which connection belongs to an online user, allowing to route the 
messages appropriately. 
 
In addition, the state of all online users, sessions and other “shared objects” is available inside 
the server. 

4. Communication patterns 
The standard communication pattern between a client and the server is a client sending a 
message to the server, which processes the message and forwards it to the intended receiving 
client (maybe with a different message type, but matching content). This is a more or less 
pure client / server communication. 
 
There are several messages for which the server broadcasts events to all users currently online 
(or all users participating in a given session). This one-to-many communication is basically 
used to propagate state changes. 
 
Another pattern of communication used often is the classic client/server communication, 
where a client sends a message to the server, which processes it, and afterwards sends the 
result back to the client. An example for this type is the login message. 
 
Figure 2 shows a part of the session setup procedure, which contains all of the patterns 
described above, as they are used in this scenario. 

 

Figure 2: Session setup messages (inccomplete) 


